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Abstract

This article proposes a benchmark set of problems for fixed mesh topology optimization in 2 dimen-
sions. We have established the problems based on an analysis of more than 100 articles in the specialized
literature, gathering the most common dimensions, loads and fixed regions used by researchers. Most of
the problems reported in specialized literature present differences in specifications such as lengths, units,
materials, etcetera, by instance, some articles propose the same proportions and geometrical shape but
different dimensions. Hence, the purpose of this benchmark is to unify geometrical and mechanical char-
acteristics and load conditions, considering that the proposed problems must to be realistic, in the sense
that the units are in the international system and a real-world material is used as well as load conditions.
The final benchmark integrates 13 problems for plane stress using ASTM A-36 steel. Additionally, we
report an approximation to the optimum solution for the compliance and volume problems (maximize
stiffness with volume constraint and minimizing volume with a stress constraint respectively) using the
Solid Isotropic Material with Penalization (SIMP) method and a new proposed method based on SIMP
plus bisection with a Stress Constraint(SIMPSC). In-house implementations of both methods (whose
are freely available for academic applications) are used.

Keywords: 2d Topology optimization, Benchmark, SIMP, stress constraint.

1 Introduction

The problem of topology optimization could be briefly described as searching for an optimum structure in a
design domain, for a given set of loads and boundary conditions, fulfilling service constraints. The optimality
could depend on minimum volume, compliance or maximum rigidity, while the service constraints could be
given by maximum displacements and stresses, and/or a given fraction of the initial volume.

Despite there are many categories of topology optimization algorithms and optimization models [22],[18],
most of them use the finite element method to evaluate candidate solutions, then any of these algorithms
require the previous establishment of the following problem properties:

• Design domain. Search space dimensions and shape.

• Boundary conditions.Fixed displacements and load conditions:

– Zero displacement conditions. Regions where the structure is fixed.

– Load conditions. Regions where the structure is affected by external forces. It is necessary to
establish the position and magnitude.

– Self body forces. The most common is the self weight, but they could exist external forces
dependent on the geometry of the body.
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• Material properties. Material properties used to make the simulation: 1 )Young modulus 2 ) Poisson

modulus 3 )maximum permissible stress. Nevertheless the maximum permissible stress is not used for
the simulation, it can be used to determine whether the material is working on the elastic range, then
it must be set not only to determine if the structure is physically feasible, but also to know if the
numerical simulation using elastic theory is valid.

• Mesh. Type, number and dimensions of elements used to mesh the domain, considering that the
numerical error of the simulation depends on the mesh.

Topology optimization researchers from different groups [1, 86, 6] solve, in many cases, similar problems
using different design domains, boundary conditions, material properties and meshes, which could cause the
following issues:

• It is difficult to perform fair comparisons between algorithms and its implementations.

• Some articles report results using properties of materials that does not exist or without considering
self weight, which is not convenient for the optimization of realistic structures.

• Using unrealistic materials and service conditions is a major concern for an adequate method, because
most of the researchers ([26],[97],[86]), assume elastic properties in the material, but they do not verify
if the material is actually working in the elastic range, even more, the problem formulation does not
considers a constraint to verify that the candidate structure is in the elastic range neither they provide
a real-world material where the elastic range is well defined.

Our proposal intend to alleviate the mentioned concerns by proposing a well defined benchmark. In
this sense, other benchmark problems has been proposed, by instance, Rozvany had proposed a benchmark
named: Exact analytical solutions for some popular benchmark problems in topology optimization [66]. In
this benchmark the analytic solutions for a set of topology optimization problems is computed. Nevertheless,
these problems are based in the optimization of a configuration of bars, determining positions, sizes, etc.,
while this article proposes a benchmark for actually optimizing the distribution of material on a domain,
so, the benchmark of Rozvany is not comparable with our benchmark neither it can be used for the same
kind of algorithms.

The main objective of this work is to establish a set of problems for topology optimization, detailing all
the characteristics mentioned before and realistic problem configurations. By using this benchmark we can
be sure that comparable algorithms are solving exactly the same problems, that the assumptions carried
out by the simulations (elasticity) are true, and that the final solutions consider real-world conditions and
materials, in consequence, we can perform fair comparisons among different approaches.

As a second goal of this report is to present a version of the SIMP method[68] for solving the proposed
benchmark.

2 Methodology for selecting the benchmark problems

We have gathered test problems from a set of 103 articles in the specialized literature. The frequency of
similar problems has been computed, grouped according the following characteristics:

• Boundary conditions. The most frequent boundary conditions considering the distance between the
fixed lines/areas and loads, and loads directions.

• The geometrical shape of the search domain. That is to say, rectangular, quadrilateral, etc.

• Dimensions. The most frequent dimensions and proportions among them.

The 13 most frequent problems are significantly more used than the others, thus they where selected.
Usually, their geometrical shape is exactly defined, and approximately the relative position of the loads.
Most of the times, they do not define exactly the size of fixed lines (lines in a 2d view, cross-section areas of
the plate), neither specify whether the loads are applied in a single point or line, in addition the thickness is
not reported as well as the unit system, and the material properties are nonexistent in real-world materials.
As consequence, we propose the following for circumventing the mentioned issues:
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• We set the units to the standard international system, that is to say: lengths are in meters (m), force

units are Newtons (N), Young modulus and yield stress is given in Pascals, and Poisson modulus is
dimensionless.

• We set the sides lengths to the most frequently reported.

• We set the thickness to 1 percent of the maximum length size in order to standardize the thickness
and to fulfill the hypothesis of plane stress.

• The external loads or forces are applied in a length of 10% of the length of the side they are applied
in. In order to avoid numerical issues given by single-point loads.

• The material properties are set as those given by steel ASTM A-36, which possibly is the most common
material used in real-life structures, and/or the most common material with similar properties than
those most commonly used in industry as well as in academic problems.

3 Statistics

In Tables 1, 2, 3 and 4 the obtained data from the 103 consulted articles are condensed. The columns in
tables report the following information:

• Column 1. Analyzed article. Cite to the proper article referenced at the bibliography.

• Column 2. Type test. Common problems types according to its geometrical properties they can be
categorized as: Cantilever, Short Catilever, LShape, MBBB, Two Bars and Michell. Some Michell
tests are marked as Michell*, this means that it is defined with two loads in boundary conditions as
such showed in subfigures 2 and 3 in figure 4.

• Column 3. Load region. In Cantilever, Short Cantilever and LShape tests, the load position sometimes
varies at Top, Center or Bottom of the load side as showed in figures 1, 2 and 3. In Two Bars, MBBB
and Michell tests, load positions never varies as showed in figures 4, 5 and 6.

• Column 4. Load magnitude. For Michell* tests(multiload) every load is presented separated with a /.

• Columns 5, 6 an 7. Lengths of the initial domain. M , L are the side lengths, as it is shown in Figures
1,2,3,4,5 and 6. t is the thickness used, thickness cells with (v) represent volume, so these tests are in
3D.

• Column 8. Fixed regions. An * represents that the tests in the article where fixed regions at the same
region that the proposed benchmark in figures 1,2,3,4,5 and 6.

A sign - indicates that there is not information about the topic in the tests at this particular article.

4 Proposed benchmark problems

In this section we provide the frequencies of the different geometries, service conditions and properties which
are the basis for the benchmark proposed in this report. First, we analyze the frequency of domains dimen-
sions and constrained lines and loads based on information gathered from papers. Using this information
we proposed a benchmark problem for the 13 most common configurations.

4.1 Load magnitudes and material properties

Loads

Loaded segments have been established in Figures 1,2,3,4,5 and 6 using literals P and Q. The magnitude
of the loads is defined in Table 5.

All the loads are uniformly distributed on 10% of the length of the side they are applied. The loads
where set in such a way that the Security Factor(SF) calculated with the full domains (initial structures
) is approximately 0.75. So we are sure every structure is feasible and that a realistic load is set, that is
to say that the work performed by the structure is closed its limit. SF is the value given by SF = σmax

σy

where σmax is the maximum von Mises stress in the structure, and σy is the yield stress which is a material
property.
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Reference Test Type Load
region

Load Size M L t Hold
Type

[15] Cantilever Central 3000 6.4 4 0.1 *
[17] Short Cantilever Bottom - 250 250 - *

Short Cantilever Bottom - 20 20 20(v) *
[61] Cantilever Central - 30 10 10(v) *

Cantilever Central - 20 10 10(v) *
Lshape Top - 12 8 5(v)
MBBB - - 30 10 10(v)

[64] Michell - - 1 1 -
Short Cantilever Top - 1 1 -

[80] Cantilever Central 10000 0.4 0.1 - *
Cantilever Central 2000 0.08 0.02 0.02(v) *

[89] Cantilever Bottom 1 100 50 - *
Two Bar Central 1 80 40 - *
Michell* - 1/1 50 50 - *

[92] MBBB - 1 - - -
Michell - 1 - - -

[96] - - - - - -
[99] - - - - - -
[106] Michell - 1 1 1 - *

Short Cantilever Bottom 1 1 1 - *
[107] MBBB - - - - - *
[1] Cantilever Central 1 2 1 -

Tshape - 1 120 80 -
Michell - 1 1 1.2 -

Cantilever Central 1 5 3 2.4(v) *
Tshape - - - - -(v) *
Lshape Central - - - -(v) *
MBBB - - - - -(v) *

[91] Cantilever Central 0.5 - - - *
Cantilever Central 1.5 - - - *

[16] Lshape Central 1 0.6 0.4 - *
[35] Lshape Central 1 0.6 0.4 - *
[29] Cantilever Central 1 2 1 - *

Michell* - 1/1 1 1 -
[34] Lshape Top 500 0.06 0.04 - *

Cantilever Central 1500 0.2 0.1 - *
[33] Lshape Top 250 0.06 0.04 - *

Cantilever Central 900 0.2 0.1 - *
[41] - - - - - -
[81] Cantilever Central 144000 1 0.25 0.1 *

Cantilever Central 240000 1 0.25 0.1 *
Cantilever Central 300000 1 0.25 0.1 *
Cantilever Central 500000 1 0.25 0.1 *

[74] MBBB - 1 - - -
Cantilever Bottom 1 - - - *

[72] Lshape Top 8000 0.06 0.04 - *
[79] Short Cantilever Bottom - 2 2 - *
[88] Cantilever Bottom 1 20 10 - *
[90] MBBB - 1 - - -

Michell - 1 - - -
[103] Cantilever Central 1 2 1 - *
[95] Short Cantilever Bottom 1 1 1 - *
[40] Cantilever Top 21000 - - -(v) *

Cantilever Central - - - -(v) *
Cantilever Bottom - - - -(v) *

[25] Cantilever Central 1.2 - - - *
Cantilever Central 1 - - - *
Cantilever Central 0.8 - - - *

[28] Two Bar - 1 2 1 - *
Lshape Central 1 0.6 0.4 - *

[37] - - - - - -

Table 1: Statistics from topology optimization literature.
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Article Test Type Load
region

Load Size M L t Hold
Type

[44] Lshape Top - - - -
[49] Two Bar - 1 0.9 0.3 - *

Lshape Top 2.5 0.6 0.4 - *
[58] Cantilever Top 500 2 1 - *
[55] Cantilever Central 150 40 20 - *
[60] Cantilever Central 2000000 2 1 0.2 *
[62] MBBB - 1 3 1 -
[67] - - - - - -
[76] Short Cantilever Bottom 100 1 1 0.001

Cantilever Central 100 1.6 1 0.001
Lshape Central 100 0.6 0.4 0.001

[78] Cantilever Bottom 1 2 1 - *
Michell - 1 1 1 - *

[93] Cantilever Central 1 0.2 0.1 - *
Cantilever Bottom 1 0.15 0.1 - *
Cantilever Bottom 1 0.09 0.06 0.03(v) *

[98] Cantilever Central - 4 2 -
MBBB - - - - - *

[101] - - - - - -
[5] Lshape Top 40 1.5 1 - *
[23] Cantilever Central - 4 1 1(v) *

Cantilever Central - 2 1 - *
Michell* - -/- 2 1 -

[77] Cantilever Central 1 80 40 - *
Cantilever Bottom 1 80 40 - *

[32] Lshape Central - - - - *
[36] Cantilever Central 1 4 2 - *

MBBB - 1 6 2 -
[48] Two Bar Central 200 0.4 0.1 0.001 *

Lshape Central 20000 0.06 0.04 - *
[50] Cantilever Central 1 60 30 - *

Michell - 1 60 30 -
MBBB - 1 90 30 -

[57] Cantilever Central - 32 16 - *
Cantilever Central - 24 12 12(v) *

MBBB - - - - - *
[94] Lshape Central 1 0.6 0.4 - *

Lshape Top 1 0.6 0.4 - *
Michell - 1 1 1 - *

[39] Cantilever Central 500000 0.4 0.25 - *
Cantilever Central - 0.6 0.3 0.2(v) *

[27] MBBB - 1 3 1 -
Cantilever Central 1 1.5 1 - *

Lshape Central 1 0.6 0.4 - *
[105] Michell* - -/- 120 120 - *
[38] Cantilever Central 1 40 25 - *

Lshape Top 1 20 20 - *
MBBB - 1 60 20 -

[45] Cantilever Central 3000 0.16 0.1 0.001
Cantilever Bottom 3000 0.16 0.1 0.001
Cantilever Top 3000 0.16 0.1 0.001

[65] Cantilever Central 30000 0.16 0.1 0.02 *
Michell* - 1000 /1000 0.5 0.5 0.02

[75] Cantilever Bottom 100 0.16 0.08 - *
[26] Cantilever Central 1 40 25 -

Cantilever Central 1 40 25 25(v)
MBBB - 1 60 20 -

[31] MBBB - 100 0.05 0.05 -
MBBB - 1 1 0.04 -

[63] Cantilever Central 10000 3 1 0.001
Cantilever - 10000 1 0.5995 0.001

Table 2: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[100] Cantilever Central 1000 10 5 - *
Cantilever Central 1000 4 2 2(v) *

[104] Cantilever Bottom - 240 150 - *
MBBB - - 120 40 -

[46] Cantilever Top 3000 0.16 0.1 0.001
Cantilever Central 3000 0.16 0.1 0.001
Cantilever Bottom 3000 0.16 0.1 0.001
Cantilever - 3000 0.16 0.1 0.001

[52] Cantilever Central 450 1.2 0.6 - *
Michell - 1 2 1 -

[8] Short Cantilever Central - 1 1 -
Cantilever Central - 2 1 -

[56] Short Cantilever Top 40 10 10 - *
Short Cantilever Central 40 10 10 - *

Michell - - 100 100 -
[21] Two Bar - - 2 1 - *

Michell - - 100 100 -
[14] Cantilever Top - 2 1 - *

MBBB - - 2 1 - *
[43] - - - - - -
[47] Michell - 1 1 1 -

Cantilever Bottom 1 2 1 - *
[51] - - - - - -
[97] Cantilever Central 1 2 1 1 *

Michell - 1 1 1.2 1
[42] Lshape Central - - - -
[86] Cantilever Central 1 2 1 - *

Michell - 1 1 1.2 - *
[6] Cantilever Central 1 2 1 - *

Michell - 1 1 1.2 -
Michell* - 1/1 1 1.2 -
Tshape - 1 4 6 - *

[13] Cantilever Top - 2 1 - *
MBBB - - 3 1 - *
Michell - - 1.5 1 - *

[53] Cantilever Central - 2 1 - *
[70] Two Bar - 1 12 4 - *

Lshape Central 1 3 3 - *
[87] Cantilever Central 1 2 1 - *

Two Bar Central 1 2 1 - *
[2] Cantilever Central - 2 1 - *

Michell* - 1/1 1 1.2 -
[84] Michell* - 30/15 6 6 - *

Cantilever Bottom 80 3.2 2 - *
[82] MBBB - 1 3 1 1

Two Bar - 1 24 10 1 *
Cantilever Central 1 5 3 1 *

[4] Cantilever Central 1 2 1 - *
Michell - 1 1 1.2 -

Cantilever Central 1 5 3 2.4(v) *
Tshape - - - - - *

[54] Cantilever Top 1000000000 4 2 1 *
MBBB - 1 3 1 -

[83] Two Bar Central 80 2 1 - *
Michell* - 30/15 6 6 - *

[12] Cantilever Central 10 0.2 0.05 - *
MBBB - 10 0.3 0.05 -

[3] Cantilever Central - - - - *
Two Bar Central - - - -(v) *

[30] Lshape Central - - - - *
Cantilever Top - - - - *

Table 3: Statistics from topology optimization literature
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Article Test Type Load
region

Load Size M L t Hold
Type

[73] MBBB - - 3 1 -
[102] Cantilever Bottom 800 34 22 - *

Michell* - 300/150 6 6 - *
Two Bar - 800 60 25 - *
Michell - 800 60 60 - *
Michell - 800 60 60 -
MBBB - 80 12 4 - *

[85] Two Bar - 40000 2 1 - *
Cantilever Bottom - - - - *

MBBB - 20000 1.2 0.4 - *
Michell* - 30/5 - - - *

[11] Cantilever Central 1 3.2 2 - *
MBBB - 1 3 1 -

[20] - - - - - -
[59] Cantilever Central 500 0.48 0.08 0.08(v) *
[69] Cantilever Central - 8 5 - *

MBBB - - 3 1 - *
[19] Cantilever Central - 1.5 1 1(v) *

Cantilever Bottom - 1.5 1 0.4(v) *
[10] Cantilever Central - - - - *
[66] Cantilever Central - - - - *

MBBB - - - - -
[71] Cantilever Central 10 80 50 -

Michell* - 10/10 20 20 1
Michell - 10 20 20 1
MBBB - 10 500 200 -

[24] Cantilever Central - - - - *
[9] Cantilever Central - - - - *

Cantilever Bottom - - - - *

Table 4: Statistics from topology optimization literature

Test Test type P Q
Cantilever(Figure 1) Central Load 8.6e4 Nw -

Bottom Load 6.2e4 Nw -
Top Load 6.2e4 Nw -

Short Cantilever(Figure 2) Central Load 9.0e4 Nw -
Bottom Load 5.8e4 Nw -

Top Load 5.8e4 Nw -
LShape(Figure 3) Central Load 1.5e4 Nw -

Top Load 1.5e4 -
Michell(Figure 4) Test1 5.6e4 Nw -

Test2 2.8e4 -
Test3 3.72e4 1.86e4

MBBB(Figure 5) - 2.7e4 -
Two Bars(Figure 6) - 15.3e4 -

Table 5: Loads values for tests

Material Properties

For the proposed tests the material used is the ASTM A-36 steel. Possibly, the most common material used
in real-world structural mechanics.

• Young modulus = 2.11e11 Pa

• Poisson ratio = 0.29

• Density = 7874 kg/m3

• Yield stress = 2.2e8 Pa
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4.2 Domains, dimensions and boundary conditions

Cantilever

Figure 1 show Cantilever domain and boundary conditions in three different fashions. This test is reported
in 67 of the 103 articles reviewed. In those 67 articles there are 91 different Cantilever tests. In 64 of the
91, the load is at the center at the right side as in Figure 1(a), in 19 it is at the bottom at the right side
as in Figure 1(b), and in 8 it is at the top at the right side as in Figure 1(c). In 19 the dimensions are the
same than those in Figure 1, and in 40 the dimensions have the same relation (R1 : R2) = (1 : 2) In 79, the
displacement-conditioned segment is the same than the proposed.

(a) Central-Load Cantilever (CLC) (b) Bottom-Load Cantilever (BLC)

(c) Top-Load Cantilever (TLC)

Figure 1: Cantilever, (a) with a central load, (b) with a load at the bottom-right, and (c) with a load at
the top-right.

Short Cantilever

Figure 2 shows the Short Cantilever domain and boundary conditions. This test is reported in 8 of the 103
articles reviewed. In those 8 articles there are 10 different Short Cantilever tests. In 2 of those 10, the load
is at the center at the right side as in Figure 2(a). In 6 is at the bottom at the right as in Figure 2(b) and in
2 is at the top-right side as in Figure 2(c). In 5 the dimensions are the same than those in Figure 2, and in
10 the dimensions have the same relation (R1 : R2) = (1 : 1). In 7, the displacement-conditioned segment
is the same than the proposed.

(a) Central-Load Short
Cantilever (CLSC)

(b) Bottom-Load Short
Cantilever (BLSC)

(c) Top-Load Short Can-
tilever (TLSC)

Figure 2: Short Cantilever, (a) with a central load, (b) with a load at the bottom-right , and (c) with a
load at the top-right side.

L Shape test

Figure 3 shows the L Shape domain and boundary conditions. This test is reported in 20 of the 103 articles
reviewed. In those 20 articles there are 21 different L Shape tests. In 12 cases the load is at the center
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of the right-bottom side as in Figure 3(a) and in 9 is at the top of the right side as in Figure 3(b). In
8, the dimensions are the same than those in Figure 3, and in 13 the dimensions have the same relation
(R1 : R2) = (0.6 : 0.4). In 17, the displacement-conditioned segment is the same than the proposed.

(a) Central-Load LShape
(CLL)

(b) Top-Load LShape (TLL)

Figure 3: L Shape, (a) with a central load, (b) with a load at the top-right.

Michell

Figure 4 shows the Michell domain and boundary conditions. This test is reported in 28 of the 103 articles
reviewed. In 28 articles there are 32 different Michell tests. In 20 of those 32 there is only one load at the
left-bottom side as in figure 4(a). In 7 there are two equal loads as in figure 4(b), and in 5 there are two
different loads as in figure 4(c). In 7 the dimensions are the same than those in Figure 4, and in 18 the
dimensions have the same relation (R1 : R2) = (1 : 1). In 20, the displacement-conditioned segment is the
same than the proposed.

(a) One-Load Michell
(OLM)

(b) Two-Equal-Loads
Michell (TELM)

(c) Two-Different-Loads
Michell (TDLM)

Figure 4: Michell, (a) with a single load, (b) with two equal loads, and (c) with two different loads.

MBBB

Figure 5 shows the MBBB domain and boundary conditions. This test is reported in 28 of the 103 articles
reviewed. 29 different MBBB tests are performed in the 28 articles. All 29 tests have no differences about
boundary conditions. In 8 the dimensions are the same than those in Figure 5, and in 16 the dimensions
have the same relation (R1 : R2) = (1 : 3). In 20 the displacement-conditioned segment is the same than
the proposed.
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Figure 5: MBBB (MBBB)

Two Bars

Figure 6 shows the Two Bars domain and boundary conditions. This test is reported in 12 of the 103
articles reviewed. There are 12 different Two Bars tests. All 12 tests have no differences about boundary
conditions. In 5 the dimensions are the same than those in Figure 6, and in 6 the dimensions have the same
relation (R1 : R2) = (1 : 2). In 12 the displacement-conditioned segment is the same than the proposed.

Figure 6: Two Bars (TB)

Until this section a set of problems has been well defined, the elastic behavior could be simulated
with several different methods, by instance, the finite element method (FEM), the finite differences method
(FDM), etc. But notice, that the numerical simulation is independent of the definition of the elastic problem.
Thus, we can consider that until here the benchmark has been defined. Nevertheless, in the next subsection
we propose a set of meshes for the FEM that could be used to approximate the solution.

5 Meshes

Figures 7, 8, 9, 10, 11 and 12 show meshes established for each test. On this figures, every side has the
number of elements which it is divided. The meshes where defined according the following criteria:

• They must use exact square elements. As, in general, we assume that we do not known the final shape,
square elements are a kind of equilibrium in numerical error cause by the element shape.

• Nodes position must allow to set exactly the boundary conditions, that is to say, we must be able to
apply the load in the exact segment it is defined.

• All meshes must have at least 10000 elements in order to produce adequate numerical results and
maintaining a relatively short computational solving time.
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Using the shortest length side as basis, with the purpose of accomplish the conditions above, we follow
the next algorithm:

1. Set a partition parameter p = 1.

2. The side of minimum length is partitioned in 10p.

3. The other sides are partitioned in regard to generate square elements.

4. If the number of elements is less than 10000, increase p = p + 1 and go to step 2. Otherwise, the
procedure stops.

Cantilever

Figure 7 shows the mesh of the Cantilever domain . The number of elements/partitions in each side is
indicated. For any of the Cantilever test we propose to mesh this problem with 12800 elements of square
elements with an area of 0.0125x0.0125 = 0.000156 m2. A uniformly distributed load P is applied on 9
nodes.

Figure 7: Cantilever mesh

Short Cantilever

Figure 8 shows the mesh of the Short Cantilever domain. The number of elements/partitions in each side is
indicated. For any of the Short Cantilever test we propose to use a mesh with 10000 elements. Every square
element has an area of 0.01x0.01 = 0.0001 m2. A uniformly distributed load P is applied on 11 nodes.

Figure 8: Short Cantilever mesh
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L Shape

Figure 9 shows the mesh of the L-shape domain. The number of elements/partitions in each side is indicated.
For any of the LShape test we propose a mesh with 14400 elements. Every square element has an area of
0.01x0.01 = 0.0001 m2. A uniformly distributed load P is applied on 7 nodes in each test.

Figure 9: LShape mesh

Michell

Figure 10 shows the mesh of the Michell domain. The number of elements/partitions in each side is indicated.
For any of the Michell test we propose a mesh with 14400 elements. Every square element has an area of
0.01x0.01 = 0.0001 unit2. Uniformly distributed loads P and Q can be applied on 11 nodes in each test.

Figure 10: Michell mesh

MBBB

Figure 11 shows the mesh of the MBBB domain. The number of elements/partitions in each side is indicated.
We proposed to mesh using 10800 square elements with an area of 0.01666x0.01666 = 0.0002777 m2. A
uniformly distributed load P is applied on 19 nodes.

12



 
 

Figure 11: MBBB mesh

Two Bars

Figure 12 shows the mesh of the MBBB domain. The number of elements/partitions in each side is indicated.
We propose to mesh using 12800 square elements with an area of 0.0125x0.0125 = 0.000156 m2. A uniformly
distributed load P is applied on 17 nodes.

Figure 12: Two Bars mesh

6 Optimization methods and objective functions

From our point of view, there are two important objective functions in topology optimization:

• Minimization of the compliance subject to volume constraint [68].

• Minimization of volume subject to a stress constraint [7].

The first, possibly, is the most widely used optimization goal in academy, while the second, in our point
of view is the most applicable approach, taking into consideration that industry most often intend to reduce
cost (volume or weight) maintaining sufficient prestations. For this benchmark both goals are addressed
using one of the best performed methods: the Solid Isotropic Material with Penalization (SIMP). This
method is used for compliance minimization subject to a constraint of volume.

For the second goal we introduce a novel modification to the SIMP which is used to address the problem
of volume minimization subject to a stress constraints. They are briefly described below.
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6.1 The SIMP

The SIMP [68] is a topology optimization method based on the homogenization concept. The idea is that
each finite element has a particular microstructure with its proper density and Young modulus. These
properties are homogenized in each element through a single design variable xi for the i element. The
elemental Young modulus is usually defined as Ei = E0x

p
i for p ≥ 3, and density is defined as ρi = ρ0xi.

Where E0 and ρ0 are Young modulus and density, respectively, of a solid element. p is a positive integer,
which is used to diminish stiffness (Young modulus) in a greater amount than density. The objective
function is derived in order to establish the first optimality condition (gradient is zero in the optimum), the
optimum configuration of design variables is approached y means of a fixed point iteration on the equation
of the first optimality condition. Some heuristics are applied int the xi updating in benefit of stabilizing
the method.

We have implemented two different SIMP algorithm, the first one is the same than in [68], the second
one has a difference in the stopping criterion. Since SIMP is a fixed point-heuristic method, hence a usual
criterion for this kind of methods (and the used one in [68]) is when x = f(x), in the case of the SIMP where
f(x) is the update of design variables), so convergence criterion used for SIMP is ||x−f(x)|| < e0 , this means
that design variables negligible change in two consecutive iterations. Although, the parameter e0 must be
tuned for each particular problem, and there are not a simple rule to set the value in an inexpensive and
straight forward manner. If one sets an e0 parameter sufficiently small to guaranty adequate convergence in
all the cases, it is quite possible that, in many cases, the structure has almost reached its final configuration,
the compliance F (x) is quite similar between consecutive iterations, but the established convergence criteria
is not reached.

In order to circumvent this issue we use another stopping criteria, the algorithm stops if both of the
following are reached: a) The absolute difference of Security Factor( FS mentioned in section 4.1 ) between
two consecutive iterations: |SF k−1 − SF k| < e where k is the iteration number, and b) The variance given

by: 1
v

∑v
i=1(G(x)i− ˆG(x))2 < e where G(x) is the group of the compliance calculated in the last v iterations,

this means that compliance in the last v iterations are similar. We have named this version SIMP with
Stress and Variance Convergence: SIMPSVC.

6.2 SIMP for volume minimization subject to a stress constraint (SIMPSC)

In contemplation of applying the SIMPSVC for minimum volume subject to a stress constraint. We follow
the next algorithm:

1. Set the volume fraction in the SIMPSVC to 0.5.

2. Execute the SIMP SVC using the convergence criteria as described above.

3. If the security factor SF of the final structure is less than 1 the volume fraction is decreased, if SF is
greater than 1 the volume fraction is increased. The volume fraction, V k, is increased or decreased a
fraction ∆V k by means of a classic bisection method in the interval [0, 1], with initial point at 0.5.

4. The SIMPSC stops if a) The final security factor of the SIMP SVC 0 < 1.0− SF k < e and SF k < 1,
or b) ∆V k < e and SF k < 1 or c) If k > itermax, where itermax is the maximum number of iterations.
Otherwise, repeat from step 2.

7 Benchmark results

In this section we present results for the SIMP, SIMPSVC and the SIMPSC. They are reported from Table
6 to 18. The parameters for the SIMP (using the nomenclature in [68]), SIMPSVC and SIMPSC are: a)
p = 3, b) m = 0.2, c) rmin = 0.05 (used for neighborhoods in filtering) d) ∆V k is reported in tables as Final
Volume Fraction, e) v = 5 ,f) e = 1.0e − 2 for SIMP and e = 1.0e − 3 for SIMPSVC and SIMPSC, and g)
itermax = 150 for SIMP and SIMP SVC and itermax = 250 for SIMPSC. All tests were done using an Intel
Core i7-2600 CPU @ 3.40GHz x 8 with 3.8 GiB RAM memory using Ubuntu 14.04 LTS, 64 bits OS.

In result tables we report the following information: row 1) Initial Security Factor, this is calculated with
the whole domain with all design variables equal to 1. It is the same for SIMPSC and SIMP and relevant only
for SIMPSC. row 2) Number of iterations. row 3) Initial volume. row 4) Final Volume. row 5) Final volume
fraction, which is also the volume constraint for SIMP. row 6) Final compliance reached. row 7) Average of
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the of X displacements in nodes with external forces. row 8) Average of absolute X displacement in nodes
with external forces. row 9) Average of Y displacements in nodes with external forces. row 10) Average
of absolute Y displacements in nodes with external forces. row 11) Average of norms of displacements in
nodes with external forces. row 12) Security factor in the last iteration. row 13) and row 14) Average
and standard deviation of elemental von Mises stress over yield stress. This value gives a general idea of
efficiency of the structure, the most efficient structure has an average of 1 and standard deviation of 0. row
14) Maximum elemental Von Mises stress in structure. The last four values are not relevant for the SIMP
and SIMP SVC, because stress is not considered in this method. In addition we report five figures for each
test problem: histograms of the von Mises stress over yield stress for the SIMP,SIMPSVC and SIMPSC.

7.1 Cantilever with load at center (CLC)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.494793 e-1 - -
Iterations 176 42 150

Initial Volume 2.0e0 2.0e0 2.0e0
Final Volume 1.271483e0 1.0e0 1.0e0

Final Volume fraction 6.357417e-1 5.0e-1 5.0e-1
Compliance 1.847301e2 2.3086e2 2.3029e2

X displacement avg -3.2311e-10 -1.9895e-10 -6.7693e-10
X displacement abs avg 3.7892e-5 4.3923e-5 4.5094e-5

Y displacement avg -1.9256e-2 -2.4083e-2 -2.4024e-2
Y displacement abs avg 1.9256e-2 2.4083e-2 2.4024e-2
|Displacement| 2.14007e-3 2.6764e-3 2.6698e-3
Security Factor 9.996258e-1 1.2499e0 1.2435e0
Avg(VM/YS) 2.2621e-1 3.4061e-1 3.3977e-1
SD(VM/YS) 6.9561e-2 7.2220e-2 7.2117e-2

Max VonMises 2.199177e8 2.7499e8 2.7357e8

Table 6: CLC execution data

(a) SIMPSC (b) *SIMPSVC, exceeds yield stress (c) *SIMP, exceeds yield stress

Figure 13: CLC: VM/YS elemental histogram

(a) CLC material (b) CLC displacements (c) CLC VonMises

Figure 14: CLC visual results with SIMPSC
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(a) CLC material (b) CLC displacements (c) CLC VonMises

Figure 15: CLC visual results with SIMPSVC

(a) CLC material (b) CLC displacements (c) CLC VonMises

Figure 16: CLC visual results with SIMP

7.2 Cantilever with load at bottom (CLB)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.526465e-1 -
Iterations 167 39 150

Initial Volume 2.0e0 2.0e0 2.0e0
Final Volume 9.25782e-1 1.0e0 1.0e0

Final Volume fraction 4.6289e-1 5.0e-1 5.0e-1
Compliance 1.3955e+2 1.2911e2 1.2828e2

X displacement avg -5.6312e-4 -5.3832e-4 -5.3654e-4
X displacement abs avg 5.6312e-4 5.3832e-4 5.3654e-4

Y displacement avg -2.0173e-2 -1.8660e-2 -1.8540e-2
Y displacement abs avg 2.0173e-2 1.8660e-2 1.8540e-2
|Displacement| 2.311752e-3 2.1427e-3 2.1293e-3
Security Factor 9.968923e-1 9.21841e-1 9.1895e-1
Avg(VM/YS) 2.7648e-1 2.5631e-1 2.5515e-1
SD(VM/YS) 5.6441e-2 5.4746e-2 5.4179e-2

Max VonMises 2.193163e8 2.02805e8 2.0216e8

Table 7: CLB execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 17: CLB: VM/YS elemental histogram
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(a) CLB material (b) CLB displacements (c) CLB VonMises

Figure 18: CLB visual results with SIMPSC

(a) CLB material (b) CLB displacements (c) CLB VonMises

Figure 19: CLB visual results with SIMPSVC

(a) CLB material (b) CLB displacements (c) CLB VonMises

Figure 20: CLB visual results with SIMP

7.3 Cantilever with load at top (CLT)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.526465e-1 - -
Iterations 167 39 150

Initial Volume 2.0e0 2.0e0 2.0e0
Final Volume 9.257e-1 1.0e0 1.0e0

Final Volume fraction 4.6289e-1 5.0e-1 5.0e-1
Compliance 1.395586e2 1.29112e2 1.2828e2

X displacement avg 5.6312e-4 5.3832e-4 5.3656e-4
X displacement abs avg 5.6312e-4 5.3832e-4 5.3656e-4

Y displacement avg -2.0173e-2 -1.8659e-2 -1.8540e-2
Y displacement abs avg 2.0173e-2 1.8659e-2 1.8540e-2
|Displacement| 2.3117e-3 2.1426e-3 2.1293e-3
Security Factor 9.968896e-1 9.2182e-1 91892e-1
Avg(VM/YS) 2.7649e-1 2.5630e-1 2.5513e-1
SD(VM/YS) 5.6441e-2 5.4744e-2 5.4175e-2

Max VonMises 2.193157e8 2.0280e8 2.0216e8

Table 8: CLT execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 21:

(a) CLT material (b) CLT displacements (c) CLT VonMises

Figure 22: CLT visual results with SIMPSC

(a) CLT material (b) CLT displacements (c) CLT VonMises

Figure 23: CLT visual results with SIMPSVC

(a) CLT material (b) CLT displacements (c) CLT VonMises

Figure 24: CLT visual results with SIMP
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7.4 Short Cantilever with load at center(SCLC)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.5516e-1 - -
Iterations 138 27 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 4.3945e-1 5.0e-1 5.0e-1

Final Volume fraction 4.39453e-1 5.0e-1 5.0e-1
Compliance 6.29219e1 5.6125e1 5.6164e1

X displacement avg 9.6287e-9 -1.2925e-8 6.2024e-9
X displacement abs avg 1.8152e-5 1.5652e-5 1.5125e-5

Y displacement avg -7.6768e-3 -6.8468e-3 -6.8517e-3
Y displacement abs avg 7.6768e-3 6.8468e-3 6.8517e-3
|Displacement| 6.9821e-4 6.2271e-4 6.2313e-4
Security Factor 9.9822e-1 9.0120e-1 8.9053e-1
Avg(VM/YS) 2.7610e-1 2.4709e-1 2.4739e-1
SD(VM/YS) 5.4350e-2 5.2463e-2 5.0792e-2

Max VonMises 2.196099e8 1.9826e8 1.9591e8

Table 9: SCLC execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 25: SCLC: VM/YS elemental histogram

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 26: SCLC visual results with SIMPSC
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(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 27: SCLC visual results with SIMPSVC

(a) SCLC material (b) SCLC displacements (c) SCLC VonMises

Figure 28: SCLC visual results with SIMP

7.5 Short Cantilever with load at bottom(SCLB)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.4841e-1 - -
Iterations 139 23 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 2.63672e-1 5.0e-1 5.0e-1

Final Volume fraction 2.63672e-1 5.0e-1 5.0e-1
Compliance 5.7462e1 2.828671e1 2.8305e1

X displacement avg -3.2983e-4 -1.6440e-4 -1.6480e-4
X displacement abs avg 3.2983e-4 1.6440e-4 1.6480e-4

Y displacement avg -1.0880e-2 -5.3506e-3 -5.3544e-3
Y displacement abs avg 1.0880e-2 5.3506e-3 5.3544e-3
|Displacement| 1.0429e-3 5.1400e-4 5.1445e-4
Security Factor 9.9849e-1 7.2492e-1 7.2553e-1
Avg(VM/YS) 3.7022e-1 1.6864e-1 1.6906e-1
SD(VM/YS) 4.4009e-2 4.3037e-2 4.2259e-2

Max VonMises 2.196685e8 1.5948e8 1.5931e8

Table 10: SCLB execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 29: SCLB: VM/YS elemental histogram

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 30: SCLB visual results with SIMPSC

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 31: SCLB visual results with SIMPSVC

(a) SCLB material (b) SCLB displacements (c) SCLB VonMises

Figure 32: SCLB visual results with SIMP
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7.6 Short Cantilever with load at top(SCLT)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.48413e-1 - -
Iterations 139 23 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 2.6367e-1 5.0e-1 5.0e-1

Final Volume fraction 2.6367e-1 5.0e-1 5.0e-1
Compliance 5.74511e1 2.8285e1 2.830491e1

X displacement avg 3.2972e-4 1.6439e-4 1.6482e-4
X displacement abs avg 3.2972e-4 1.6439e-4 1.6482e-4

Y displacement avg -1.0878e-2 -5.3504e-3 -5.3543e-3
Y displacement abs avg 1.0878e-2 5.3504e-3 5.3543e-3
|Displacement| 1.0427e0-3 5.1398e-4 5.1445e-4
Security Factor 9.9795e-1 7.2490e-1 7.2551e-1
Avg(VM/YS) 3.7014e-1 1.6863e-1 1.6905e-1
SD(VM/YS) 4.3981e-2 4.3037e-2 4.2255e-2

Max VonMises 2.195505e8 1.5947e8 1.5961e8

Table 11: SCLT execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 33: SCLT: VM/YS elemental histogram

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 34: SCLT visual results with SIMPSC
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(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 35: SCLT visual results with SIMPSVC

(a) SCLT material (b) SCLT displacements (c) SCLT VonMises

Figure 36: SCLT visual results with SIMP

7.7 LShape with load at center(LLC)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.5569e-1 - -
Iterations 170 30 150

Initial Volume 6.4e-1 6.4e-1 6.4e-1
Final Volume 2.91253e-1 3.2e-1 3.2e-1

Final Volume fraction 4.5508e-1 5.0e-1 5.0e-1
Compliance 2.32316e1 2.0906e1 2.0794e1

X displacement avg -5.8670e-4 -5.1391e-4 -5.1657e-4
X displacement abs avg 5.8670e-4 5.1391e-4 5.1657e-4

Y displacement avg -1.0810e-2 -9.7257e-3 -9.6748e-3
Y displacement abs avg 1.0810e-2 9.7257e-3 9.6748e-3
|Displacement| 1.6459e-3 1.4816e-3 1.4757e-3
Security Factor 9.980207e-1 9.4391e-1 9.3930e-1
Avg(VM/YS) 2.1641e-1 1.8954e-1 1.8868e-1
SD(VM/YS) 4.2650e-2 3.9668e-2 3.9945e-2

Max VonMises 2.19564e8 2.0766e8 2.0664e8

Table 12: LLC execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 37: LLC: VM/YS elemental histogram

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 38: LLC visual results with SIMPSC

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 39: LLC visual results with SIMPSVC

(a) LLC material (b) LLC displacements (c) LLC VonMises

Figure 40: LLC visual results with SIMP
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7.8 LShape with load at top(LLT)

Data SIMPSC SIMPSVC SIMP
Initial SF 7.55501e-1 - -
Iterations 183 28 150

Initial Volume 6.4e-1 6.4e-1 6.4e-1
Final Volume 2.7246e-1 3.2e-1 3.2e-1

Final Volume fraction 4.25724e-1 5.0e-1 5.0e-1
Compliance 2.53894e1 2.01911e1 2.1044e1

X displacement avg -1.8755e-4 -1.6784e-4 -1.6760e-4
X displacement abs avg 1.8755e-4 1.6784e-4 1.6760e-4

Y displacement avg -1.1819e-2 -9.8113e-3 -9.7886e-3
Y displacement abs avg 1.1819e-2 9.8113e-3 9.7886e-3
|Displacement| 1.6992e-3 1.4119e-3 1.4087e-3
Security Factor 9.9995e-1 9.0702e-1 9.0651e-1
Avg(VM/YS) 2.3528e-1 1.8814e-1 1.8762e-1
SD(VM/YS) 4.1240e-2 3.8693e-2 3.8581e-2

Max VonMises -2.19989e8 1.9954e8 1.9943e8

Table 13: LLT execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 41: LLT: VM/YS elemental histogram

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 42: LLT visual results with SIMPSC
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(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 43: LLT visual results with SIMSVCP

(a) LLT material (b) LLT displacements (c) LLT VonMises

Figure 44: LLT visual results with SIMP

7.9 One-Load Michell

Data SIMPSC SIMPSVC SIMP
Initial SF 7.5248e-1 - -
Iterations 138 30 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 4.4531e-1 5.0e-1 5.0e-1

Final Volume fraction 4.4531e-1 5.0e-1 5.0e-1
Compliance 3.2247e+1 2.8184e1 2.7777e1

X displacement avg 1.9085e-5 1.7803e-5 1.7974e-5
X displacement abs avg 1.9085e-5 1.7803e-5 1.7974e-5

Y displacement avg -6.3126e-3 -5.5149e-3 -5.4353e-3
Y displacement abs avg 6.3126e-3 5.5149e-3 5.4353e-3
|Displacement| 5.7431e-4 5.0180e-4 4.9457e-4
Security Factor 9.9963e-1 9.3160e-1 9.2516e-1
Avg(VM/YS) 2.0239e-1 1.7432e-1 1.7361e-1
SD(VM/YS) 3.7517e-2 3.6663e-2 3.6530e-2

Max VonMises 2.1992e8 2.0495e8 2.0353e8

Table 14: OLM execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 45: OLM: VM/YS elemental histogram

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 46: OLM visual results with SIMPSC

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 47: OLM visual results with SIMPSVC

(a) OLM material (b) OLM displacements (c) OLM VonMises

Figure 48: OLM visual results with SIMP
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7.10 Two-Equal-Loads Michell

Data SIMPSC SIMPSVC SIMP
Initial SF 7.4867e-1 - -
Iterations 156 29 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 4.082e-1 5.0e-1 5.0e-1

Final Volume fraction 4.082e-1 5.0e-1 5.0e-1
Compliance 2.9077e1 2.2515e1 2.2538e1

X displacement avg 4.6020e-5 3.8176e-5 3.8311e-5
X displacement abs avg 4.6020e-5 3.8176e-5 3.8311e-5

Y displacement avg -1.1384e-2 -8.8085e-3 -8.8171e-3
Y displacement abs avg 1.1384e-2 8.8085e-3 8.8171e-3
|Displacement| 5.2082e-4 4.0333e-4 4.0367e-4
Security Factor 9.9362e-1 9.0963e-1 9.0184e-1
Avg(VM/YS) 2.0362e-1 1.5617e-1 1.5654e-1
SD(VM/YS) 3.2775e-2 2.9895e-2 2.9579e-2

Max VonMises 2.18159e+8 2.0012e8 1.9840e8

Table 15: TELM execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 49: TELM: VM/YS elemental histogram

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 50: TELM visual results with SIMPSC
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(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 51: TELM visual results with SIMPSVC

(a) TELM material (b) TELM displacements (c) TELM VonMises

Figure 52: TELM visual results with SIMP

7.11 Two-Different-Loads Michell

Data SIMPSC SIMPSVC SIMP
Initial SF 7.4729e-1 - -
Iterations 130 29 150

Initial Volume 1.0e0 1.0e0 1.0e0
Final Volume 4.1601e-1 5.0e-1 5.0e-1

Final Volume fraction 4.1601e-1 5.0e-1 5.0e-1
Compliance 2.9675e1 2.3782e1 2.3804e1

X displacement avg 4.6116e-5 3.9801e-5 3.9140e-4
X displacement abs avg 4.6116e-5 3.9801e-5 3.9140e-4

Y displacement avg -1.1274e-2 -9.0578e-3 -9.0486e-3
Y displacement abs avg 1.1274e-2 9.0578e-3 9.0486e-3
|Displacement| 5.1584e-4 4.1483e-4 4.1426e-4
Security Factor 9.9502e-1 9.2524e-1 9.1705e-1
Avg(VM/YS) 1.9987e-1 1.5972e-1 1.6052e-1
SD(VM/YS) 3.4099e-2 3.3142e-2 3.0831e-2

Max VonMises 2.1890e8 2.0355e8 2.0175e8

Table 16: TDLM execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 53: TDLM VM/YS elemental histogram

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 54: TDLM visual results with SIMPSC

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 55: TDLM visual results with SIMPSVC

(a) TDLM material (b) TDLM displacements (c) TDLM VonMises

Figure 56: TDLM visual results with SIMP
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7.12 MBBB

Data SIMPSC SIMPSVC SIMP
Initial SF 7.4724e-1 - -
Iterations 174 32 150

Initial Volume 3.0e0 3.0e0 3.0e0
Final Volume 8.7304e-1 1.5e0 3.0e0

Final Volume fraction 2.9101e-1 5.0e-1 5.0e-1
Compliance 7.2730e1 4.1618e1 4.1311e1

X displacement avg -5.6241e-5 -4.0913e-5 -3.9833e-5
X displacement abs avg 5.6241e-5 4.0913e-5 3.9833e-5

Y displacement avg -5.0429e-2 -2.8525e-2 -2.8313e-2
Y displacement abs avg 5.0429e-2 2.8525e-2 2.8313e-2
|Displacement| -2.65497e-3 1.5020e-3 1.4909e-3
Security Factor 9.9933e-1 8.3442e-1 8.4178e-1
Avg(VM/YS) 2.1763e-1 1.1495e-1 1.1495e-1
SD(VM/YS) 3.6821e-2 3.3244e-2 3.3244e-2

Max VonMises 2.1985e8 1.8357e8 1.8519e8

Table 17: MBBB execution data

(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 57: MBBB: VM/YS elemental histogram

(a) MBBB material (b) MBBB displacements

(c) MBBB VonMises

Figure 58: MBBB visual results with SIMPSC
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(a) MBBB material (b) MBBB displacements

(c) MBBB VonMises

Figure 59: MBBB visual results with SIMPSVC

(a) MBBB material (b) MBBB displacements

(c) MBBB VonMises

Figure 60: MBBB visual results with SIMP

7.13 Two Bars

Data SIMPSC SIMPSVC SIMP
Initial SF 7.4920e-1 - -
Iterations 192 68 96

Initial Volume 2.0e0 2.0e0 2.0e0
Final Volume 2.880e-1 5.0e-1 5.0e-1

Final Volume fraction 1.4404e-1 2.5e-1 2.5e-1
Compliance 1.9446e2 9.8653e1 9.8640e1

X displacement avg -3.9891e-10 -4.2028e-11 -6.1112e-11
X displacement abs avg 1.0968e-5 4.4010e-6 4.5801e-6

Y displacement avg -2.1587e-2 -1.0945e-2 -1.0943e-2
Y displacement abs avg 2.1587e-2 1.0945e-2 1.0943e-2
|Displacement| 1.2699e-3 6.4386e-4 6.4378e-4
Security Factor 9.9857e-1 6.1681e-1 6.0319e-1
Avg(VM/YS) 6.8345e-1 3.4487e-1 3.4487e-1
SD(VM/YS) 4.3589e-2 3.0273e-2 2.9974e-2

Max VonMises 2.19686e8 1.3569e8 1.3270e8

Table 18: Two Bars execution data
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(a) SIMPSC (b) SIMPSVC (c) SIMP

Figure 61: TWO BARS: VM/YS elemental histogram

(a) TB material (b) TB displacements (c) TB VonMises

Figure 62: Two Bars visual results with SIMPSC

(a) TwoBars material (b) TwoBars displace-
ments

(c) TwoBars VonMises

Figure 63: Two Bars visual results with SIMPSVC
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Figure 64: Two Bars visual results with SIMP

8 Conclusions

In this report we have introduced a benchmark for topology optimization in 2d, considering plane stress.
The purpose of the benchmark is to unify realistic dimensions, material and boundary conditions, in order
to perform fair comparisons among competing algorithms. The proposed benchmark can be used under
different objective functions, although we present results for two kind of problems: minimize compliance
subject to a volume constraint, and minimize volume subject to a stress constraint. In both cases we use
variations of the SIMP for reporting approximations to the optimal solutions. Hence, we compare the original
SIMP with an improved version which better detects convergence, avoiding to perform excessive evaluations
that do not always improve the structure. Furthermore, our improved SIMP version, named SIMPSC, in
average uses 77.5% less evaluations than the original SIMP, which was stopped in 150 iterations, because the
other recommended stopping criteria are not straight forward tuned for most of the cases. Nevertheless the
SIMPSVC significantly uses less evaluations, the compliance difference is in average 0.68 %, what means
that the SIMP, actually, does not improve significantly the solution in the last iterations, and often it
diminish the quality of the solution. Additionally, we introduce another method called SIMPSC (SIMP
with Stress Constraint), which is capable of delivering an approximated solution for the minimum volume
problem regarding the maximum permissible von Mises stress. When using the original SIMP one can not
have certainty about functionality, because the method does not verify that the structure is working in the
elastic range, for example, in the CLC problem reported in Section 7 SIMP and SIMSVC exceed the yield
stress while the SIMPSC does not, actually SIMPSC always delivers a structure with security factor around
1.

In summary, the aim of this report is to provide of a benchmark and reference solutions for the 2d
topology optimization problem for different objective functions. The resulted benchmark is product of an
exhaustive study of literature, and testing of different conditions with one of the best performed algorithms:
the original SIMP, and two modified versions.
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